{}

Our Brands

Impact-Company-Logo-English Black-01-177x54

Welcome to the Schneider Electric Website

Welcome to our website.
How can we help you today?
How to size a Supply Transformer for a Variable speed drive (VSD)?

Article available in these languages: Japanese

In most simple way, rated power of the transformer that is designed for Variable speed drive supply is about 1.5-2.5 times the power of VSD. To be precise, transformer kVA power has to cover active power consumption, reactive power and harmonics, also overload if required by application.
In case of our Altivar series (ATV) of variable speed drives, cos phi is equal to 1, so there is no reactive power. But the harmonics have great influence on transformer power.
Altivar process ATV600 or ATV900 without a passive filter achieves total harmonic distortion in current (THDi) around 40% (example: datasheet of ATV660C63Q4X1 shows 38%). And as you know, power factor is expressed as PF=1/sqrt(1+THDi^2), which in case of 40% THDi gives result PF=0.93 . Besides that, consider rated Altivar power is a power that reflects mechanical power on motor shaft. E.g. 220kW motor will take 220kW + motor losses from ATV. And ATV will consume from grid power equal to 220kW+motor losses+ATV losses and all multiplied by PF.
In case of heavy duty where ATV can go overload, apply overload factor.

For instance ATV660C63Q4X1 in heavy duty. Motor is 500kW. ATV660C63Q4 input power is:  500kW + motor losses + 14kW (losses of ATV660C63Q4X1 from datasheet). Lets estimate motor losses and get ATV input power around 550kW. Then by applying power factor 0.93, the apparent power gives 550/0.93= 592kVA. As alternative, the apparent power not need to be calculated if available on datasheet. For ATV660C63Q4, the data shows 588kVA in heavy duty.

Next, on transformer you probably do not want to go to the same overload (1.5 times for 60secnds in HD) as with the motor, although transformer allows certain overload as well.
Therefore calculate transformer apparent power as overload from your application cycle * 588kVA. If you use max cycle with 1.5 times overload, I recommend to size transformer for 1.5*588kVA = 882kVA

For ATV660C63Q4X1 in heavy duty, use se transformer with rated power at least 882kVA
When it comes to transformer voltage, think about the voltage drop in cables, chokes, etc. For 400V motor I would propose 415-420V transformer secondary rated voltage.

Schneider Electric Australia

Explore more
Range:
Articles that might be helpful Users group

Discuss this topic with experts

Visit our Community for first-hand insights from experts and peers on this topic and more.
Explore more
Range: