IEC defines a SELV system as "an electrical system in which the voltage cannot exceed ELV under normal conditions, and under single-fault conditions, including earth faults in other circuits".
There exists some confusion regarding the origin of the acronym: "SELV" stands for "separated extra-low voltage" in installation standards (e.g., BS 7671) and for "safety extra-low voltage" in appliance standards (e.g., BS EN 60335).
A SELV circuit must have:
A typical example for a SELV circuit is a Class III battery charger, fed from a Class II power supply.
There exists some confusion regarding the origin of the acronym: "SELV" stands for "separated extra-low voltage" in installation standards (e.g., BS 7671) and for "safety extra-low voltage" in appliance standards (e.g., BS EN 60335).
A SELV circuit must have:
- protective-separation (i.e., double insulation, reinforced insulation or protective screening) from all circuits other than SELV and PELV (i.e., all circuits that might carry higher voltages)
- simple separation from other SELV systems, from PELV systems and from earth (ground).
- the extra-low voltage
- the low risk of accidental contact with a higher voltage;
- the lack of a return path through earth (ground) that electric current could take in case of contact with a human body.
A typical example for a SELV circuit is a Class III battery charger, fed from a Class II power supply.