Product data sheet

Specifications

ATV212WD55N4C
(!) To be discontinued on: Dec 31, 2024
(1) To be discontinued

Main

Device Short Name	ATV212
Product Destination	Asynchronous motors
Network Number Of Phases	3 phases
Motor Power Kw	55 kW
Motor Power Hp	75 hp
Supply Voltage Limits	$323 . .528 \mathrm{~V}$
Supply Frequency	$50 \ldots 60 \mathrm{~Hz}-5 . . .5$ \%
Line Current	102.7 A at 380 V 89 A at 480 V
Range Of Product	Altivar 212
Product Or Component Type	Variable speed drive
Product Specific Application	Pumps and fans in HVAC
Communication Port Protocol	LonWorks APOGEE FLN BACnet METASYS N2 Modbus
[Us] Rated Supply Voltage	$380 \ldots 480$ V - 15... 10 \%
Emc Filter	Class C1 EMC filter integrated
Ip Degree Of Protection	IP55
Complementary	
Apparent Power	76.3 kVA at 380 V
Continuous Output Current	$\begin{aligned} & 116 \mathrm{~A} \text { at } 380 \mathrm{~V} \\ & 116 \mathrm{~A} \text { at } 460 \mathrm{~V} \end{aligned}$
Maximum Transient Current	127.6 A for 60 s
Speed Drive Output Frequency	$0.5 \ldots . .200 \mathrm{~Hz}$
Speed Range	1... 10
Speed Accuracy	+/-10 \% of nominal slip 0.2 Tn to Tn
Local Signalling	1 LED (red) for DC bus energized
Output Voltage	<= power supply voltage
Isolation	Electrical between power and control

Type Of Cable	Without mounting kit: 1 wire(s)IEC cable at $45^{\circ} \mathrm{C}$, copper $90^{\circ} \mathrm{C} / \mathrm{XLPE} / E P R$ Without mounting kit: 1 wire(s)IEC cable at $45^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C} / \mathrm{PVC}$ With UL Type 1 kit: 3 wire(s) UL 508 cable at $40^{\circ} \mathrm{C}$, copper $75^{\circ} \mathrm{C} / \mathrm{PVC}$
Electrical Connection	VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES: terminal $2.5 \mathrm{~mm}^{2}$ / AWG 14 L1/R, L2/S, L3/T: terminal $130 \mathrm{~mm}^{2}$ (250 kcmil) U/T1, V/T2, W/T3: terminal $150 \mathrm{~mm}^{2}$ (300 kcmil)
Tightening Torque	0.6 N.m (VIA, VIB, FM, FLA, FLB, FLC, RY, RC, F, R, RES) 16 N.m, $142 \mathrm{lb} . \mathrm{in}$ (L1/R, L2/S, L3/T) 41 N.m, $360 \mathrm{lb} . \mathrm{in}$ (U/T1, V/T2, W/T3)
Supply	Internal supply for reference potentiometer (1 to 10 kOhm): 10.5 V DC +/- $5 \%,<10$ A, protection type: overload and short-circuit protection Internal supply: 24 V DC ($21 . . .27 \mathrm{~V}$), <200 A, protection type: overload and shortcircuit protection
Sampling Duration	$2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ F discrete $2 \mathrm{~ms}+/-0.5 \mathrm{~ms} R$ discrete $2 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ RES discrete $3.5 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ VIA analog $22 \mathrm{~ms}+/-0.5 \mathrm{~ms}$ VIB analog
Response Time	FM 2 ms , tolerance $+/-0.5 \mathrm{~ms}$ for analog output(s) FLA, FLC 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s) FLB, FLC 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s) RY, RC 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s)
Accuracy	$+/-0.6 \%$ (VIA) for a temperature variation $60^{\circ} \mathrm{C}$ $+/-0.6 \%$ (VIB) for a temperature variation $60^{\circ} \mathrm{C}$ +/- 1% (FM) for a temperature variation $60^{\circ} \mathrm{C}$
Linearity Error	VIA: $+/-0.15 \%$ of maximum value for input VIB: +/- 0.15% of maximum value for input FM: $+/-0.2$ \% for output
Analogue Output Type	FM switch-configurable voltage $0 . . .10 \mathrm{~V}$ DC, impedance: 7620 Ohm, resolution 10 bits FM switch-configurable current $0 . . .20 \mathrm{~mA}$, impedance: 970 Ohm, resolution 10 bits
Discrete Output Type	Configurable relay logic: (FLA, FLC) NO - 100000 cycles Configurable relay logic: (FLB, FLC) NC - 100000 cycles Configurable relay logic: (RY, RC) NO - 100000 cycles
Minimum Switching Current	3 mA at 24 VDC for configurable relay logic
Maximum Switching Current	5 A at 250 V AC on resistive load $-\cos \mathrm{phi}=1-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}(\mathrm{FL}, \mathrm{R})$ 5 A at 30 V DC on resistive load $-\cos$ phi $=1-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}(\mathrm{FL}, \mathrm{R})$ 2 A at 250 VAC on inductive load $-\cos p h i=0.4-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}(\mathrm{FL}, \mathrm{R})$ 2 A at 30 V DC on inductive load $-\cos \mathrm{phi}=0.4-L / R=7 \mathrm{~ms}(F L, R)$
Discrete Input Type	F programmable 24 V DC, with level 1 PLC, impedance: 4700 Ohm R programmable 24 V DC, with level 1 PLC, impedance: 4700 Ohm RES programmable 24 V DC, with level 1 PLC, impedance: 4700 Ohm
Discrete Input Logic	Positive logic (source) (F, R, RES), <=5 V (state 0), >= 11 V (state 1) Negative logic (sink) (F, R, RES), >= 16 V (state 0), <= 10 V (state 1)
Dielectric Strength	3535 V DC between earth and power terminals 5092 V DC between control and power terminals
Insulation Resistance	>= 1 mOhm 500 V DC for 1 minute
Frequency Resolution	Display unit: 0.1 Hz Analog input: $0.024 / 50 \mathrm{~Hz}$
Communication Service	Write multiple registers (16) 2 words maximum Write single register (06) Monitoring inhibitable Read holding registers (03) 2 words maximum Read device identification (43) Time out setting from 0.1 to 100 s
Option Card	Communication card for LonWorks
Specific Application	HVAC
Discrete Output Number	2
Analogue Input Number	2

Analogue Input Type	VIA switch-configurable voltage: $0 . . .10 \mathrm{~V}$ DC 24 V max, impedance: 30000 Ohm, resolution 10 bits VIB configurable voltage: $0 . . .10 \mathrm{~V}$ DC 24 V max, impedance: 30000 Ohm, resolution 10 bits VIB configurable PTC probe: $0 . . .6$ probes, impedance: 1500 Ohm VIA switch-configurable current: $0 . . .20 \mathrm{~mA}$, impedance: 250 Ohm, resolution 10 bits
Analogue Output Number	1
Physical Interface	2-wire RS 485
Connector Type	1 RJ45 1 open style
Transmission Rate	9600 bps or 19200 bps
Transmission Frame	RTU
Number Of Addresses	1... 247
Data Format	8 bits, 1 stop, odd even or no configurable parity
Type Of Polarization	No impedance
Asynchronous Motor Control Profile	Voltage/frequency ratio - Energy Saving, quadratic U/f Voltage/frequency ratio, 2 points Flux vector control without sensor, standard Voltage/frequency ratio, 5 points Voltage/frequency ratio, automatic IR compensation (U/f + automatic Uo)
Torque Accuracy	+/-15 \%
Transient Overtorque	120% of nominal motor torque + / 10% for 60 s
Acceleration And Deceleration Ramps	Linear adjustable separately from 0.01 to 3200 s Automatic based on the load
Motor Slip Compensation	Not available in voltage/frequency ratio motor control Automatic whatever the load Adjustable
Switching Frequency	$6 . . .16 \mathrm{kHz}$ adjustable $8 . . .16 \mathrm{kHz}$ with derating factor
Nominal Switching Frequency	8 kHz
Braking To Standstill	By DC injection
Network Frequency	$47.5 \ldots . .63 \mathrm{~Hz}$
Prospective Line Isc	22 kA
Protection Type	Overheating protection: drive Thermal power stage: drive Short-circuit between motor phases: drive Input phase breaks: drive Overcurrent between output phases and earth: drive Overvoltages on the DC bus: drive Break on the control circuit: drive Against exceeding limit speed: drive Line supply overvoltage and undervoltage: drive Line supply undervoltage: drive Against input phase loss: drive Thermal protection: motor Motor phase break: motor With PTC probes: motor
Width	362 mm
Height	1000 mm
Depth	364 mm

Environment

Pollution Degree	3 conforming to IEC 61800-5-1
Ip Degree Of Protection	IP55 conforming to IEC 61800-5-1
	IP55 conforming to IEC 60529

Vibration Resistance	1.5 mm (f= $3 \ldots 13 \mathrm{~Hz}$) conforming to IEC 60068-2-6 1 gn ($\mathrm{f}=13 \ldots 200 \mathrm{~Hz}$) conforming to EN/IEC 60068-2-8
Shock Resistance	15 gn for 11 ms conforming to IEC 60068-2-27
Environmental Characteristic	Classes 3C1 conforming to IEC 60721-3-3 Classes 3 S2 conforming to IEC 60721-3-3
Noise Level	63.7 dB conforming to $86 / 188 /$ EEC
Operating Altitude	1000... 3000 m limited to 2000 m for the Corner Grounded distribution network with current derating 1% per 100 m < $=1000 \mathrm{~m}$ without derating
Relative Humidity	$5 . . .95 \%$ without condensation conforming to IEC 60068-2-3 $5 . .95 \%$ without dripping water conforming to IEC 60068-2-3
Ambient Air Temperature For Operation	$-10 . .40^{\circ} \mathrm{C}$ (without derating) $40 \ldots 50^{\circ} \mathrm{C}$ (with derating factor)
Operating Position	Vertical +/-10 degree
Product Certifications	C-Tick CSA UL NOM 117
Marking	CE
Standards	IEC 61800-3 environments 1 category C3 IEC 61800-3 environments 1 category C2 IEC 61800-5-1 IEC 61800-3 environments 1 category C1 IEC 61800-3 category C1 IEC 61800-3 environments 2 category C2 IEC 61800-3 environments 2 category C3 IEC 61800-3 IEC 61800-3 environments 1 category C1 IEC 61800-3 environments 2 category C2 IEC 61800-3 environments 2 category C1 IEC 61800-5-1 IEC 61800-3 IEC 61800-3 environments 1 category C2 EN 55011 group 1 class B IEC 61800-3 environments 2 category C3 EN 61800-3 category C1 IEC 61800-3 environments 2 category C1 IEC 61800-3 environments 1 category C3
Assembly Style	With heat sink
Electromagnetic Compatibility	Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Voltage dips and interruptions immunity test conforming to IEC 61000-4-11
Regulation Loop	Adjustable PI regulator
Ambient Air Temperature For Storage	$-25 \ldots .70^{\circ} \mathrm{C}$
Packing Units	
Unit Type Of Package 1	PCE
Number Of Units In Package 1	1
Package 1 Height	45 cm
Package 1 Width	44 cm
Package 1 Length	116 cm
Package 1 Weight	77 kg

Contractual warranty
18 months

Sustainability

Green Premium ${ }^{\text {TM }}$ label is Schneider Electric's commitment to delivering products with best-inclass environmental performance. Green Premium promises compliance with the latest regulations, transparency on environmental impacts, as well as circular and low- CO_{2} products.
Guide to assessing product sustainability is a white paper that clarifies global eco-label standards and how to interpret environmental declarations.
Learn more about Green Premium >
Guide to assess a product's sustainability >

Transparency RoHS/REACh

Well-being performance

[^0](V) Rohs Exemption Information

Yes

Certifications \& Standards

Reach Regulation	REACh Declaration
Eu Rohs Directive	Pro-active compliance (Product out of EU RoHS legal scope)
China Rohs Regulation	China RoHS declaration
Environmental Disclosure	Product Environmental Profile
Weee	The product must be disposed on European Union markets following specific waste
Circularity Profile in rubbish bins	

California Proposition 65

WARNING: This product can expose you to chemicals including: Lead and lead compounds, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

Dimensions Drawings

Dimensions

Product data sheet

ATV212WD55N4C

Mounting and Clearance

Mounting Recommendations

Clearance

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories
Install the unit vertically:

- Do not place it close to heating elements
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from bottom to the top of the unit.

Type A Mounting

3-Phase Power Supply

A1: ATV 212 drive
KM1: Contactor
Q1: Circuit breaker
Q2: GV2 L rated at twice the nominal primary current of T1
Q3: GB2CB05
S1, S2: XB4 B or XB5 A pushbuttons
T1: $\quad 100 \mathrm{VA}$ transformer 220 V secondary
(1) Fault relay contacts for remote signalling of the drive status
(2) Connection of the common for the logic inputs depends on the positioning of the switch (Source, PLC, Sink)
(3) Reference potentiometer SZ1RV1202

NOTE: All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Switches (Factory Settings)

Voltage/current selection for analog I/O (VIA and VIB)

Voltage/current selection for analog I/O (FM)

Selection of logic type PLC		
$\left.\begin{array}{l}\text { Sink } \\ \text { (1) }\end{array}\right)$		
(1) negative logic		
(2)		

Other Possible Wiring Diagrams

Logic Inputs According to the Position of the Logic Type Switch

2-wire control

F: Forward
R : Preset speed
(2) ATV 212 control terminals

F: Forward
R: Stop
RES: Reverse
(2) ATV 212 control terminals

PTC probe

(2) ATV 212 control terminals
(3) Motor

Analog Inputs

Voltage analog inputs

Voltage analog inputs
External $+10 \mathrm{~V}$
(2) ATV 212 control terminals
(4) Speed reference potentiometer 2.2 to $10 \mathrm{k} \Omega$
(2) ATV 212 control terminals

Analog input configured for current: 0-20 mA, 4-20 mA, X-Y mA

(2) ATV 212 control terminals
(5) Source $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, \mathrm{X}-\mathrm{Y} \mathrm{mA}$

Analog input VIA configured as positive logic input ("Source" position)

(2) ATV 212 control terminals

Analog input VIA configured as negative logic input ("Sink" position)

(2) ATV 212 control terminals

Product data sheet

ATV212WD55N4C

Performance Curves

Derating Curves

The derating curves for the drive nominal current (In) depend on the temperature and the switching frequency. For intermediate temperatures ($45^{\circ} \mathrm{C}$ for example), interpolate between 2 curves.

X
Switching frequency

[^0]: ($)$
 Mercury Free

