Product data sheet

Specifications

variable speed drive, Altivar
Machine ATV340, 22kW, heavy
duty, 400V, 3 phases
ATV340D22N4

Main

Range Of Product	Altivar Machine ATV340
Product Or Component Type	Variable speed drive
Product Specific Application	Machine
Variant	Standard version
Mounting Mode	Cabinet mount
Communication Port Protocol	Modbus serial
Option Card	Communication module, Profibus DP V1 Communication module, PROFINET Communication module, DeviceNet Communication module, CANopen
Communication module, EtherCAT	
Network Number Of Phases	3 phases
[Us] Rated Supply Voltage Frequency	$50 \ldots 60$ Hz +/- 5 \%
Nominal Output Current	$380 \ldots .480$ V - 15...10 \%
Motor Power Kw	46.0 A
Motor Power Hp	30 kW for normal duty
22 kW for heavy duty	
Emc Filter	40 hp for normal duty
Ip Degree Of Protection	Class C3 EMC filter integrated

Complementary

Discrete Input Number	5
Discrete Input Type	PTI programmable as pulse input: $0 \ldots 30 \mathrm{kHz}, 24 \mathrm{~V} C(30 \mathrm{~V})$ DI1...DI5 safe torque off, 24 V DC (30 V), impedance: 3.5 kOhm programmable
Number Of Preset Speeds	16 preset speeds
Discrete Output Number	2.0
Discrete Output Type	Programmable output DQ1, DQ2 30 V DC 100 mA
Analogue Input Number	2
Analogue Input Type	Al1 software-configurable current: $0 . . .20 \mathrm{~mA}$, impedance: 250 Ohm, resolution 12 bits AI1 software-configurable temperature probe or water level sensor Al1 software-configurable voltage: $0 . . .10 \mathrm{~V}$ DC, impedance: 31.5 kOhm , resolution 12 bits AI2 software-configurable voltage: - 10... 10 V DC, impedance: 31.5 kOhm, resolution 12 bits

Analogue Output Number	2
Analogue Output Type	Software-configurable voltage AQ1: $0 \ldots 10 \mathrm{~V}$ DC impedance 470 Ohm, resolution 10 bits Software-configurable current AQ1: $0 . . .20 \mathrm{~mA}$ impedance 500 Ohm, resolution 10 bits
Relay Output Number	2
Output Voltage	<= power supply voltage
Relay Output Type	Relay outputs R1A Relay outputs R1C electrical durability 100000 cycles Relay outputs R2A Relay outputs R2C electrical durability 100000 cycles
Maximum Switching Current	Relay output R1C on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 250 V AC Relay output R1C on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 30 V DC Relay output R1C on inductive load, cos phi $=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 250 V AC Relay output R1C on inductive load, cos phi $=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 30 V DC Relay output R2C on resistive load, cos phi $=1: 5 \mathrm{~A}$ at 250 V AC Relay output R2C on resistive load, cos phi $=1: 5 \mathrm{~A}$ at 30 V DC Relay output R2C on inductive load, cos phi $=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 250 V AC Relay output R2C on inductive load, cos phi $=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 30 V DC
Minimum Switching Current	Relay output R1B: 5 mA at 24 V DC Relay output R2C: 5 mA at 24 V DC
Physical Interface	2-wire RS 485
Connector Type	1 RJ45
Method Of Access	Slave Modbus RTU
Transmission Rate	4.8 kbit/s 9.6 kbit/s 19.2 kbit/s 38.4 kbit/s
Transmission Frame	RTU
Number Of Addresses	1... 247
Data Format	8 bits, configurable odd, even or no parity
Type Of Polarization	No impedance
4 Quadrant Operation Possible	True
Asynchronous Motor Control Profile	Variable torque standard Constant torque standard Optimized torque mode
Synchronous Motor Control Profile	Permanent magnet motor Reluctance motor
Pollution Degree	2 conforming to IEC 61800-5-1
Maximum Output Frequency	0.599 kHz
Acceleration And Deceleration Ramps	Linear adjustable separately from 0.01... 9999 s S, U or customized
Motor Slip Compensation	Adjustable Can be suppressed Automatic whatever the load Not available in permanent magnet motor law
Switching Frequency	2... 16 kHz adjustable $6 . . .16 \mathrm{kHz}$ with derating factor
Nominal Switching Frequency	4 kHz
Braking To Standstill	By DC injection
Brake Chopper Integrated	True

Line Current	60.1 A at 380 V (normal duty) 48.6 A at 480 V (normal duty) 63.5 A at 380 V (heavy duty) 50.6 A at 480 V (heavy duty)
Line Current	63.5 A at 380 V without line choke (heavy duty) 50.5 A at 480 V without line choke (heavy duty) 67.9 A at 480 V with external line choke (normal duty) 54.4 A at 380 V with external line choke (heavy duty) 64.1 A at 480 V with external line choke (heavy duty) 50.8 A at 380 V with external line choke (normal duty)
Maximum Input Current	63.5 A
Maximum Output Voltage	480 V
Apparent Power	45.1 kVA at 480 V (normal duty) 42.1 kVA at 480 V (heavy duty)
Maximum Transient Current	68.2 A during 60 s (normal duty) 69 A during 60 s (heavy duty) 83.7 A during 2 s (normal duty) 83 A during 2 s (heavy duty)
Electrical Connection	Screw terminal, clamping capacity: $0.2 \ldots . .2 .5 \mathrm{~mm}^{2}$ for control Screw terminal, clamping capacity: $6 \ldots .25 \mathrm{~mm}^{2}$ for motor Screw terminal, clamping capacity: $10 . . .25 \mathrm{~mm}^{2}$ for line side Screw terminal, clamping capacity: $10 \ldots 25 \mathrm{~mm}^{2}$ for DC bus
Prospective Line Isc	22 kA
Base Load Current At High Overload	46.0 A
Base Load Current At Low Overload	62.0 A
Power Dissipation In W	Natural convection: 28 W at 380 V , switching frequency 4 kHz (heavy duty) Forced convection: 486 W at 380 V , switching frequency 4 kHz (heavy duty) Natural convection: 39 W at 380 V , switching frequency 4 kHz (normal duty) Forced convection: 631 W at 380 V , switching frequency 4 kHz (normal duty)
Electrical Connection	Control: screw terminal $0.2 \ldots . .2 .5 \mathrm{~mm}^{2} /$ AWG $24 \ldots$...AWG 12 Motor: screw terminal $6 \ldots .25 \mathrm{~mm}^{2} /$ AWG $8 \ldots .$. AWG 3 Line side: screw terminal 10 ... $25 \mathrm{~mm}^{2} /$ AWG 6...AWG 3 DC bus: screw terminal $10 \ldots 25 \mathrm{~mm}^{2} /$ AWG 6...AWG 3
With Safety Function Safely Limited Speed (SIs)	True
With Safety Function Safe Brake Management (Sbc/Sbt)	True
With Safety Function Safe Operating Stop (Sos)	False
With Safety Function Safe Position (Sp)	False
With Safety Function Safe Programmable Logic	False
With Safety Function Safe Speed Monitor (Ssm)	False
With Safety Function Safe Stop 1 (Ss1)	True
With Sft Fct Safe Stop 2 (Ss2)	False
With Safety Function Safe Torque Off (Sto)	True
With Safety Function Safely Limited Position (SIp)	False
With Safety Function Safe Direction (Sdi)	False

Protection Type	Thermal protection: motor Safe torque off: motor Motor phase loss: motor Thermal protection: drive Safe torque off: drive Overheating: drive Overcurrent: drive Output overcurrent between motor phase and earth: drive Output overcurrent between motor phases: drive Short-circuit between motor phase and earth: drive Short-circuit between motor phases: drive Motor phase loss: drive DC Bus overvoltage: drive Line supply overvoltage: drive Line supply undervoltage: drive Input supply loss: drive Exceeding limit speed: drive Break on the control circuit: drive
Width	180.0 mm
Height	385.0 mm
Depth	249.0 mm
Net Weight	10.2 kg
Continuous Output Current	62 A at 4 kHz for normal duty 46 A at 4 kHz for heavy duty

Environment

Operating Altitude	<= 3000 m with current derating above 1000 m
Operating Position	Vertical $+/-10$ degree
Product Certifications	UL
	CSA
	EAUV
	CTick
Marking	CE
Standards	IEC $61800-3$
	IEC $61800-5-1$
	IEC $60721-3$
	IEC 13808
	UL $618000-5-1$
UL 508 C	

Regulation Loop	Adjustable PID regulator
Noise Level	56.7 dB
Pollution Degree	2
Ambient Air Transport Temperature	$-40 \ldots . .70^{\circ} \mathrm{C}$
Ambient Air Temperature For Operation	$-15 \ldots . .50^{\circ} \mathrm{C}$ without derating (vertical position)
$50 \ldots 60^{\circ} \mathrm{C}$ with derating factor (vertical position)	
Ambient Air Temperature For Storage	$-40 \ldots 70^{\circ} \mathrm{C}$
Isolation	Between power and control terminals

Packing Units

Unit Type Of Package 1	PCE
Number Of Units In Package 1	1
Package 1 Height	30.000 cm
Package 1 Width	56.000 cm
Package 1 Length	34.000 cm
Package 1 Weight	11.900 kg
Unit Type Of Package 2	P06
Number Of Units In Package 2	2
Package 2 Height	75.000 cm
Package 2 Width	60.000 cm
Package 2 Length	80.000 cm
Package 2 Weight	36.800 kg

Sustainability

Green Premium ${ }^{\text {TM }}$ label is Schneider Electric's commitment to delivering products with best-inclass environmental performance. Green Premium promises compliance with the latest regulations, transparency on environmental impacts, as well as circular and low- CO_{2} products.
Guide to assessing product sustainability is a white paper that clarifies global eco-label standards and how to interpret environmental declarations.
Learn more about Green Premium >
Guide to assess a product's sustainability >

Transparency RoHS/REACh

Resource performance

Upgraded Components Available

Well-being performance
(V) Mercury Free
(V) Rohs Exemption Information

Yes

Certifications \& Standards

Reach Regulation REACh Declaration

Eu Rohs Directive	Pro-active compliance (Product out of EU RoHS legal scope)
China Rohs Regulation	China RoHS declaration
Environmental Disclosure	Product Environmental Profile
Weee	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins
Circularity Profile	End of Life Information

California Proposition 65

WARNING: This product can expose you to chemicals including: Lead and lead compounds, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

Product data sheet
ATV340D22N4

Dimensions Drawings

Dimensions

Views: Front - Left - Rear

Product data sheet
ATV340D22N4

Mounting and Clearance

Clearance

Dimensions in $\mathbf{~ m m}$

X1	X2	X3
\geqslant_{100}	$\geqslant 100$	$\geqslant 60$

Dimensions in in.

X 1	X 2	X 3
$\geqslant_{3.94}$	$\geqslant_{3.94}$	$\geqslant_{2.36}$

Mounting Types

Mounting Type A: Side by Side IP20

Possible, at ambient temperature $\leq 50^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$
Mounting Type B: Individual IP20

$a \geqslant$ 50 mm (1.97 in.) from $50 \ldots . .60^{\circ} \mathrm{C}$, no restriction below $50^{\circ} \mathrm{C}$

Product data sheet

ATV340D22N4

Connections and Schema

Connections and Schema

Three-phase Power Supply with Upstream Breaking via Line Contactor Without Safety Function STO

Connection diagrams conforming to standards ISO13849 category 1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1.

(1) Use relay output R1 set to operating state Fault to switch Off the product once an error is detected.

A1: Drive
KM1 : Line Contactor
Q2, Q3 : Circuit breakers
S1: Pushbutton
S2 : Emergency stop
T1: Transformer for control part

Three-phase Power Supply With Downstream Breaking via Switch Disconnector

(1) Use relay output R1 set to operating state Fault to switch Off the product once an error is detected.

A1: Drive
Q1: Switch disconnector

Sensor Connection

It is possible to connect either 1 or 3 sensors on terminals Al1.

Control Block Wiring Diagram

(1) 24 V supply (STO)
(2) STO - Safe Torque Off
(3) PTI - Pulse Train In
(4) PTO - Pulse Train Out
(5) Motor Encoder connection
(6) Digital outputs
(7) Digital inputs
(8) Analog output
(9) Analog input
(10) Differential Analog Input
(11) Ethernet port (only on Ethernet drive version)

SW1: Sink/Source switch
R1A, R1B, R1C: Fault relay
R2A, R2C : Sequence relay

Digital Inputs Wiring

Digital Inputs: Internal Supply

In SRC position DISUP outputs 24 V . In SK position DISUP is connected to 0 V .
Digital Inputs: External Supply
Positive Logic, Source, European Style

Digital Inputs: Internal supply
Negative Logic, Sink, Asian Style

Digital Outputs Wiring

Digital Outputs: Internal Supply
Positive Logic, Source, European Style, DQCOM to +24V

(1) Relay or valve

Negative Logic, Sink, Asian Style, DQCOM to OV

(1) Relay or valve

Digital Outputs: External Supply
Positive Logic, Source, European Style, DQCOM to +24 V

(1) Relay or valve

Negative Logic, Sink, Asian Style, DQCOM to OV

Product data sheet
ATV340D22N4

(1) Relay or valve

Performance Curves

Open Loop Applications

1: Self-cooled motor: continuous useful torque
2: Force-cooled motor: continuous useful torque
3 : Overtorque for 60 s maximum
4: Transient overtorque for 2 s maximum
5: Torque in overspeed at constant power

Closed Loop Applications

1: Self-cooled motor: continuous useful torque
2 : Force-cooled motor: continuous useful torque
3 : Overtorque for 60 s maximum
4: Transient overtorque for 2 s maximum
5 : Torque in overspeed at constant power

